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LETTERS TO THE EDITOR

Re: The Use of Inferred Haplotypes
in Downstream Analysis

To the Editor: In a letter published in the March 2007 issue
of the Journal, Lin and Huang1 described some potential
pitfalls in haplotype analysis when only unphased ge-
notyped data are available. In particular, they relate the
problems associated with picking the most probable hap-
lotype from a distribution of potential haplotypes to use
in risk analysis, replacing the unobserved haplotypes with
their “best estimates.” This particular form of “single im-
putation” can indeed be dangerous. However, another
form of single imputation exists that is far more reliable,
as has been shown in a series of articles describing ana-
lytical results and a series of simulation experiments.2,3

This “correct” single-imputation method is the expecta-
tion-substitution method first described for haplotype
analysis by Zaykin et al.,4 but which has analogues in
many parts of biostatistical analysis dealing with mea-
surement errors.5,6

Consider a model in which the number of copies car-
ried of a certain haplotype, h, is related to the odds of
disease in a log-linear fashion. The expectation-substitu-
tion method works as follows: since the number of copies
of the risk haplotype carried, nh, is unknown for most
individuals when only genotype data are available, one
replaces this unknown quantity with its conditional ex-
pectation, E(nhFG), where G is the observed set of (un-
phased) markers, and the expectation is generally com-
puted under the assumption that the haplotype frequen-
cies are known and under the assumption of Hardy-Wein-
berg equilibrium. This expectation (which generally takes
noninteger values 0–2 and thus is definitely not equiva-
lent to using the most likely value of nh, which must take
values 0, 1, or 2) is then used as if it were the true value
of nh, with no other allowance for the uncertainty of the
estimation of nh. In particular, we perform score tests and
likelihood-ratio tests of the null hypothesis (that h is un-
related to risk) as if nh were known for all subjects. This
method is not limited to log-linear penetrance models and
can be extended to dominant, recessive, or codominant
models by calculating the expected values of appropriate
diplotype codings.2 It has been used in a large number of
recent analyses of haplotype-specific risk in candidate-
gene studies.7–10

The following issues arise in the application of this
method:

1. Because haplotype frequencies must be estimated
from a finite amount of genotype data, the calcula-
tion of the expectation is itself uncertain, and this
uncertainty is being neglected. What effect does this
have?

2. Because odds-ratio (OR) models are not strictly linear

in nh, the expected OR as a function of nh is not equal
to the OR function applied to E(nh). Is this an im-
portant problem?

3. Doesn’t case-control sampling distort haplotype
frequencies? Should the expectation be applied sep-
arately to the cases and controls, or should the
cases and controls be combined to compute the
expectation?

Regarding issue 1, it turns out11 that the score test arising
from the expectation method is both valid and asymp-
totically fully efficient for testing the null hypothesis of
no haplotype-specific risk associated with haplotype h
against the alternative (that disease odds are log-linear in
nh). Thus, for score tests under the null hypothesis, there
is no need to account for the uncertainty of the estimates
of the haplotype frequencies on which the calculation of
E(nh) is based. Similarly, under the null hypothesis, case-
control sampling does not distort the distribution of the
risk haplotype, so the calculation of the expectation is
not affected. This means that we do not need to account
for case-control sampling either when testing the null
hypothesis.

Simulations under the alternative hypothesis2 tend to
show that, under the alternative hypothesis (that disease
is associated with haplotype count), the expectation-sub-
stitution method also gives quite reasonable estimates and
confidence limits for the value of the risk parameter (log-
OR per copy of h) in most practical settings. Here, we
present the results of two simulation experiments. We
considered estimating the association between five-SNP
haplotypes and disease risk in two situations: low hap-
lotype diversity (table 1) and high haplotype diversity (ta-
ble 2). For the first situation, only seven haplotypes were
present: 00000, 00001, 00010, 00011, 00100, 01000, and
10000 with frequencies 0.35, 0.15, 0.15, 0.05, 0.1, 0.1, and
0.1, respectively ( for all haplotypes, where is2 2R 1 0.7 Rh h

the squared correlation of expected versus true haplotype
counts12). For the second situation, all 32 possible hap-
lotypes were equally likely. This is something of a worst-
case scenario for haplotype association analysis, both be-
cause of the high ambiguity in haplotypes given the
genotypes ( for all haplotypes) and because all2R ≈ 0.43h

haplotypes are relatively uncommon (frequency !0.04).
We compared the performance of logistic regression, using
the true haplotypes, the most likely haplotype pair given
the genotype data, the expectation-substitution method,
and the prospective likelihood implemented in the
haplo.glm function of the R package haplo.stats.13 This
last approach is similar in spirit to that advocated by Lin
and Huang,1 since it maximizes a likelihood that integrates
over the missing haplotype-phase information. (We chose
haplo.glm primarily for computational simplicity. This al-
lowed us to perform simulations, analysis, archiving, and
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Table 1. Comparison of Haplotype-Association Methods under Low Haplotype Diversity

Method

Relative Risk p 1.0 Relative Risk p 1.5 Relative Risk p 3.0

Bias MSE Var(b) E(Var) Cover Bias MSE Var(b) E(Var) Cover Bias MSE Var(b) E(Var) Cover

True haplotypes .005 .016 .016 .016 .960 .009 .016 .015 .015 .938 .005 .013 .013 .015 .958
Expectation substitution .006 .021 .021 .018 .940 .008 .017 .017 .017 .968 �.002 .015 .015 .017 .968
Maximum likelihood .006 .021 .021 .018 .940 .009 .017 .017 .017 .968 .000 .015 .015 .017 .968
Most-likely haplotypes .004 .016 .016 .015 .948 �.026 .015 .014 .014 .946 �.069 .017 .013 .014 .919

NOTE.—Based on 500 simulated studies of 600 cases and 600 controls. Genotypes were drawn conditional on disease status, with the assumption
of the haplotype structure described in the text and a log-linear model of disease risk, with risk haplotype 00001 and baseline disease probability
of 1%. For each method, log-ORs for six haplotypes (the 00000 haplotype was set as reference) were estimated jointly. Bias p average estimated
log-OR minus the true log-OR; MSE p mean squared error in estimate for risk-haplotype log-OR; Var(b) p variance of estimated log-OR; E(Var) p
mean of estimated parameter estimate variance; cover p empirical coverage of nominal 95% CI.

Table 2. Comparison of Haplotype-Association Methods under High Haplotype Diversity

Method

Relative Risk p 1.0 Relative Risk p 1.5 Relative Risk p 3.0

Bias MSE Var(b) E(Var) Cover Bias MSE Var(b) E(Var) Cover Bias MSE Var(b) E(Var) Cover

True haplotypes �.003 .111 .111 .113 .950 .036 .102 .101 .104 .952 .039 .086 .085 .098 .960
Expectation substitution �.007 .683 .684 .587 .952 �.019 .485 .485 .508 .970 �.046 .335 .336 .414 .980
Maximum likelihood �.027 1.241 1.242 .205 .590 .069 .986 .984 .166 .618 .213 .886 .849 .142 .551
Most-likely haplotypes �.008 .288 .288 .257 .950 �.271 .301 .228 .196 .884 �.697 .634 .150 .163 .449

NOTE.—Based on 500 simulated studies of 600 cases and 600 controls. Genotypes were drawn conditional on disease status, with the assumption
that all 32 possible five-SNP haplotypes are equally likely and with a log-linear model for disease risk, with risk haplotype 00001 and baseline
disease probability of 1%. For each method, log-ORs for six haplotypes (the 00000 haplotype was set as reference) were estimated jointly. Bias
was calculated relative to the true ORs for the risk haplotype. Bias p average estimated log-OR minus the true log-OR; MSE p mean squared error
in estimate for risk-haplotype log-OR; Var(b) p variance of estimated log-OR; E(Var) p mean of estimated parameter estimate variance; cover p
empirical coverage of nominal 95% CI.

summary in one statistical package, R. Although HAPSTAT,
the graphical user interface implementation of the max-
imum-likelihood methods developed by Lin et al.,14–16 is
quite user-friendly and suitable for the analysis of single
data sets, it does not appear to be easily automated for the
analysis of hundreds of simulated data sets.)

As can be seen from table 1, under low haplotype di-
versity, the expectation-substitution and the maximum-
likelihood method give indistinguishable results. In fact,
the average euclidean distance between the vectors of hap-
lotype log-ORs for the two methods is !0.007 for all the
situations presented in table 1, and the average distance
between the haplotype frequency vectors was !0.001. Nei-
ther method has noticeable bias, and both have appro-
priate coverage for ORs of 1.5 and 3.0. The most-likely-
haplotype method is slightly biased toward the null.

On the other hand, both the expectation-substitution
and maximum-likelihood methods show evidence of bias
under high haplotype diversity (table 2). The expectation-
substitution method shows modest bias toward the null,
whereas the maximum-likelihood method shows stronger
bias away from the null. Moreover, the nominal 95% CIs
for the expectation-substitution method have appropriate
coverage, whereas those for the maximum-likelihood
method are far too small, and the average estimated var-
iance for the estimated log-OR is noticeably smaller than
the observed variance in the maximum-likelihood esti-
mates. We hypothesize that this is due to the relatively
large number of highly colinear parameters (64) that must
be jointly estimated from data from 600 cases and 600

controls. We emphasize that the high-diversity situation
should not often arise in practice, because haplotype as-
sociation analyses are generally restricted to regions of low
haplotype diversity (appropriately so, in our opinion), but
it is interesting that even in this situation the expectation-
substitution method shows only modest bias and retains
appropriate coverage, whereas the maximum-likelihood
method performs poorly, perhaps because of numerical
difficulties.

Although we used the expectation-maximization algo-
rithm to estimate haplotype frequencies and posterior
haplotype probabilities conditional on individual geno-
types, one could also use more-sophisticated algorithms,
such as those implemented in PHASE.17 PHASE has been
shown to provide more-accurate estimates of haplotype
frequencies than does the expectation-maximization
algorithm,18 in part because it models mutation and
recombination processes, whereas the expectation-
maximization algorithm only assumes Hardy-Weinberg
equilibrium. The fact that the expectation-substitution
approach allows the user to choose from a range of hap-
lotype-frequency–estimation algorithms is a potential ad-
vantage over the maximum-likelihood approach, al-
though, for most situations where haplotype association
analysis is applied—small numbers of SNPs in high linkage
disequilibrium over short distances—we anticipate that
the difference between haplotype-frequency estimates
from PHASE and from the expectation-maximization al-
gorithm will be quite small.

Our conclusions based on this type of simulation are
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that the expectation-substitution method provides very
reliable inference (correct type I error rates under the null
hypothesis), good power under alternatives, and little bias
either in overall estimates or in confidence limits. It ap-
pears to be that only when the true ORs become extremely
large do some problems occur with the method, and,
frankly, from an epidemiological perspective, we should
be so lucky as to have very many association studies with
this problem!
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Reply to Peter Kraft and Daniel O. Stram

To the Editor: The main purpose of our original letter1 was
to show that the common practice of using the most prob-
able haplotype in association analysis can be dangerous.
We are glad that Kraft and Stram share this view and pro-
vide numerical support.2(in this issue) We agree with them that
the expectation-substitution method is generally prefer-
able to the use of the most probable haplotype. Because
it ignores the phenotype information and the case-control
sampling in the imputation, however, this method can
still yield biased and inefficient analysis of association. In
our original letter,1 we reported the power estimates of
62%, 49%, 42%, and 50% for detecting the effects of hap-
lotypes D, F, G, and H, respectively, in a simulation study
mimicking that of French et al.3 The corresponding power
estimates for the expectation-substitution method are
56%, 42%, 36%, and 42%. Thus, the expectation-substi-
tution method is considerably less powerful than the max-
imum-likelihood method.

The simulation results shown in table 2 of the letter by
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